当前,全球零售业发展势头迅猛。在信息流通先于商品流通的时代,零售企业必须依靠企业的信息化来可持续发展。很多零售企业已采用了一系列信息技术。在信息化进程加快同时,也带来海量的、分布的、异构的数据信息。如果数据不能及时的转化为知识,那么零售企业经营决策的正确性和时效性将大打折扣。于是,近几年来数据挖掘技术在零售业得到了的应用。利用数据挖掘技术对数据进行分析,可以帮助零售企业进行科学的决策。 数据挖掘是从大量、不完全、有噪声、模糊、随机的实际应用数据中抽取隐含在其中的、有意义、未知的但有潜在使用价值的知识和信息过程。从商业角度看,数据挖掘是新型的商业分析处理技术。它是从大型数据库中现并提取隐藏在其中信息的一种新技术,帮助决策者寻找数据间潜在的关联,发现被忽略的因素。数据挖掘涉及的学科领域和方法很多,包括统计学、机器学习、数据库、模式识别、可视化以及高性能计算等多个学科。根据任务可分为:关联规则发现、分类或预测模型发现、序列模式发现、数据总结、聚类、依赖关系或依赖模型发现、异常和趋势发现等;基于潜客识别引擎,帮您发现哪些人具有更高的营销成功率。智能数据挖掘费用
为什么选择暖榕?丰富的数据接入。 对于SaaS服务,您只需将电子表格或文本文件加载并上传。对于本地部署,支持数据库接口(如MySQL、Oracle、SQL server)、文件服务器(如FTP)及云(如Hive、Hbase);简单的操作。基于先进的自动处理技术,屏蔽掉繁琐的算法细节。您无需任何算法或IT知识,只需简单调整几个参数,即可获得优良的挖掘结果。这意味着更低的使用门槛和更少的人工干预,让您更专注于业务本身的价值;所见即所知。执行因果关系检验、影响因素分析、相关性检验、趋势预测、误差分析、拟合优度检验、蒙特卡罗仿真等步骤*,并以业务的眼光和易于理解的方式展现。 从便捷的SaaS到专有计算系统。 您可以根据业务需要,选择适合的服务方式:如果您希望灵活付费并立即获得见解:请使用SaaS版云计算引擎;如果云计算引擎不能有效处理您的数据:请与我们联系,我们将为您提供个性化的解决方案;如果您的数据量非常大,或希望使用一组引擎:请与我们联系进行引擎开发和部署;如果您有特殊功能需要实现,或要满足严格的数据合规:请与我们联系进行本地部署。物流数据挖掘是什么定制分析服务门槛和价格都很高?选择SaaS,不养团队、弹性成本!
销量预测可以分为新店/新品销量预测和老店/老品销量预测,此处重点论述老店/老品销量预测(下文销量预测均为老店/老品销量预测) 为什么要预测销量?销量预测对生鲜零售和餐饮行业非常重要。业内的朋友一定深有感触:由于产品及原料存在保质期,若储备不足,会限制供应能力、导致品类不全、既影响营收又影响顾客消费体验;若储备过量卖不掉,又会过期浪费,白白扔钱。实际上,无论生鲜/餐饮,还是其它实体行业、服务业、电商等,销量(客流量、销售额...)预测的重要性都是不言而喻的。大至国企央企,小至门店地摊,销售是业务出口,上游的供应链、生产、备货、仓储、物流、产品服务定价都与之息息相关。
组合与推荐引擎:您来自零售、餐饮、电商或服务业;您想把单品搭配成套餐,或想在顾客点了一些东西或把商品加到购物车后,再向他推荐一些别的。使用组合与推荐引擎,帮您深度挖掘商品的内部关系!只需片刻,即可处理多达200万条数据,对高达50000个订单和5000个商品进行分析计算,并将图文并茂的报告呈现眼前。从组合的角度重新发现你的商品,探索商品之间的内部联系。 您从事餐饮、零售、电商、服务...(比如您是一家快餐店店主),您想把一些单品搭配成组合或套餐放到团购网站上引流,或者让用户买起来更方便...(比如您将豆浆和南瓜饼拼在一起,并起了个好听的名字叫“早餐超值6元享”),或者,您只是想在客户买了一些东西后,再给他推荐一些别的...(比如您的顾客点了杯豆浆,您觉得他应该还需要一份小笼包)。用所见即所知代替困惑:只需上传一份订单明细,剩下的就交给我们吧!基于“暖榕敏捷数据挖掘系统——组合推荐引擎”,迅速建立产品之间的关联性,让你从组合的视角重新认识你的产品。基于智能拟合引擎引擎拟合影响因素并预测未知。
但销量预测本身是一个复杂问题。大企业经常重金聘请咨询公司或雇佣分析团队,但效果往往不够理想。除技术因素外,通常还有以下两个原因:业务和数据形态千差万别。且不说不同行业,即使同一连锁店的不同门店,情况也各不相同,外部分析团队往往由于不熟悉业务或数据的细节,而造成偏差;销量预测是时序预测,而时序预测是外推预测。与一般回归、分类、聚类等方法相比,外推预测是根据历史预测未来,不确定性更大。即便如此,大企业相比小企业仍有巨大优势。无数的中小企业不具备任何预测能力,在市场竞争或转型升级时都颇为被动。基于RFM客户价值分析器,衡量客户价值和客户创造利益的能力。制造业数据挖掘工程师
基于时序预测引擎,帮您预测未来。智能数据挖掘费用
目前,传感器、多媒体、数据库和无线网络技术得到了迅速发展和普及,并应用于工业生产中。由此,工业生产监控系统、工业设备维护系统、工业生产过程处理系统等。这些自动化系统在运行中积累了大量的数据资源。为了提高数据资源的利用效果,发现数据中潜在的有价值的信息,迫切需要引入大数据挖掘技术,包括K-means算法、BP神经网络、遗传算法、关联规则等,从而提高工业大数据挖掘的分析能力,建立先进的数据挖掘模式,拥有强大的应用环境。智能数据挖掘费用
上海暖榕智能科技有限责任公司是以提供暖榕敏捷数据挖掘系统,数据分析SaaS工具,数据挖掘解决方案为主的有限责任公司,暖榕智能是我国数码、电脑技术的研究和标准制定的重要参与者和贡献者。暖榕智能以暖榕敏捷数据挖掘系统,数据分析SaaS工具,数据挖掘解决方案为主业,服务于数码、电脑等领域,为全国客户提供先进暖榕敏捷数据挖掘系统,数据分析SaaS工具,数据挖掘解决方案。暖榕智能将以精良的技术、优异的产品性能和完善的售后服务,满足国内外广大客户的需求。